Infrared Spectra of Poly(ethylene 2,6-Naphthalate) and Some Related Polyesters

ISUKE OUCHI, MASAHIRO HOSOI, and SAKAE SHIMOTSUMA,* Plastics Research Institute, Teijin Limited, Sagamihara, Japan

Synopsis

Infrared spectra of some poly(methylene terephthalates) and some poly(methylene 2,6-naphthalates) were compared. To interpret the spectral changes during drawing and heat treatment, the concept of rotational isomerism of the $-O(CH_2)_m - O$ — part, which was fairly successful in poly(ethylene terephthalate) (C_2T), was tried to apply to the polyesters other than C_2T . Also, the bands originated from a benzene ring and from a naphthalene ring were distinguished. Poly(ethylene 2,6-naphthalate) (C_2N) has some bands behaving differently from those of other polyesters. This would be due to the existence of certain intermolecular interactions arised from tight packing of the molecules in the crystal of C_2N .

INTRODUCTION

Poly(ethylene 2,6-naphthalate) (C_2N) is relatively well known among poly-(methylene 2,6-naphthalates) with different numbers of methylene groups:

The properties and the crystal structure of C_2N have been discussed by several authors,¹⁻⁵ but its infrared spectrum has not been reported yet. On the other hand, the infrared spectrum of poly(ethylene terephthalate) (C_2T) whose repeat unit has a benzene ring instead of a naphthalene ring in the main chain has been the subject of extensive studies since the late fifties.⁶⁻¹⁰ Most spectral changes during drawing and heat treatment of C_2T were explained by a number of workers, except Liang and Krimm,⁸ in terms of rotational isomerism of ethylene glycol residue. It would be of interest to compare the spectra of various poly-(methylene terephthalates) and poly(methylene 2,6-naphthalates) and to see if the spectral changes due to drawing or heat treatment in these polymers, particularly in C_2N , conform to the above interpretation in C_2T . The comparison of the spectra would also provide knowledge on the difference between the bands originating from a benzene ring and from a naphthalene ring.

* Present address: Teijin-Konishiroku Film Co., Sagamihara, Japan.

3445

© 1977 by John Wiley & Sons, Inc.

Fig. 1. Infrared spectrum of C_2N .

BANDS ASSOCIATED WITH -O-(CH₂)_m-O--

Infrared spectra in the range between 4000 and 400 cm⁻¹ were taken by means of a Japan Spectroscopic Co., Type IRA-2 spectrometer. The spectrum of C_2N is shown in Figure 1. Also, in Table I, all the bands of C_2T , C_3T [poly(trimethylene terephthalate)], C_4T [poly(tetramethylene terephthalate)], $C_{2N_1}C_4N$ [poly(tetramethylene 2,6-naphthalate)], and C_6N [poly(hexamethylene 2,6naphthalate)] are summarized.

As we will discuss below, the bands at 2965, 2910, 1477, 1453, 1370, and 1330 cm⁻¹ are considered to be related to the vibration of CH₂, and the bands at 1090 and 1044 cm⁻¹ may be associated with the vibration of C—O in ethylene glycol residue in C₂N.

The bands at 2965 and 2910 cm⁻¹ of C_2N correspond to the bands at 2950 and 2900 cm⁻¹ of C_2T and should be the antisymmetric and symmetric vibration of CH₂, respectively. By heat treatment, structures appear at 2990 and 2890 cm⁻¹ as shown in Figure 2. The spectra of C_3T , C_4T , C_4N , and C_6N have corresponding bands but do not show distinct structures as in C_2N upon heating. A spectrometer of high dispersion may be necessary to investigate these points further.

The bands around at 1470 and 1450 cm⁻¹ exist in all the polyesters concerned here. In C₂N, the σ band at 1477 cm⁻¹ intensifies and the π band at 1433 cm⁻¹ weakens by drawing or heat treatment, as shown in Figure 3. These bands may be assigned as CH₂ bending vibrations of trans and gauche configurations, respectively, as in C₂T. This assignment may be supported by the fact that there are two absorption bands between 1440 and 1470 cm⁻¹ in bis(β -hydroxyethyl) 2,6-naphthalate and diethyl 2,6-naphthalate, but that there are no absorption in this range in naphthalene and 2,6-naphthalic acid, which have no CH₂ group in the molecules. The 1477 cm⁻¹ band of C₂N shows much sharper σ polarization

				ļ																									
·				Assignment		(HO)∥	overtone $\nu(C=0)$	$\nu(\text{arom. CH})$	w(arom. CH) crys.	$\nu_a(\mathrm{CH}_2)$ crys.	$\nu_a(CH_2)$ amorph.	$\nu_{s}(CH_{2})$ amorph.	$\nu_s(\mathrm{CH}_2)$ crys.			⊮(C=0)	arom. ring vibration	arom. ring vibration	arom. ring vibration	$\delta(CH_2)$ trans		δ(CH ₂) gauche		arom. ring vibration		$\gamma_w({ m CH_2})$ gauche	$\gamma_w({ m CH_2})$ trans	$\gamma_w(\mathrm{CH}_2)$ trans	
	V_6N	Intensity polarization	spectral	change	ΜΛ	ΜΛ	т м	w	sh crys.		ш ш	ш ш		w		r sv			= B	⊤ ¤		sh		m		ms	s		
	U	Fre-	quency	cm ⁻¹	3610	3540	3400	3050	3030		2930	2850		1950		1715	1600		1500	1470		1450		1400		1365	1340		
	C4N	Intensity polarization	spectral	change	ΜΛ	ΜΛ	w L	W			E	mw		W		T SA	s	T mn	n B	ш		m		m m		m	ms	:	. wm
		Fre- 1	quency	cm	3610	3550	3400	3050			2940	2880		1950		1715	1600	1570	1500	1460		1445		1400		1380	1340		1320
	C_2N	Intensity polarization	spectral	change	wv	WV	⊥ w	T m	sh crys.	mw crys.	Ш	w	sh crys.	M	νw	VS L	s	vw L	= =	+ + ₩	sh	<u>।</u> В	sh	n		- sm	s +	sh crys.	
		Fre-	quency	cm ⁻¹	3650	3550	3430	3060	3050	2990	2965	2910	2890	1950	1820	1715	1600	1570	1500	1477	1455	1450	1440	1400		1370	1337	1332	
	C4T	Intensity	spectral	change	ΜΛ	wv	⊤ M	w			E E	mw		w		vs L	w	mm	в	sh	sh	Ħ	sh ⊥	s 		ms	mw		ms
		Fre-	quency	cm ⁻¹	3630	3550	3420	3050			2950	2880		1950		1715	1610	1575	1500	1470	1460	1450	1440	1400		1380	1350		1320
	c_{3T}	Intensity	spectral	change	WV	ΜΛ	T M	W			u	mw		W		vs L	w	mw	E	+ T mm		ו ש		s	mw crys.	- mm	+s		
		Fre-	quency	cm ⁻¹	3650	3550	3430	3050			2970	2900		1950		1715	1610	1575	1500	1470		1450		1400	1380	1365	1340		
	$c_2^{\dagger}T$	Intensity polarization	spectral	change	ΜΛ	νw	T m	m			m m	mw		w	MA	T SV	W		B	+⊤ w		n n		s	mw crys.	- mm	s +		
		Fre-	quency	cm ⁻¹	3650	3560	3440	3055			2950	2900		1957	1830	1715	1615	1575	1508	1475		1450		1400	1380	1365	1337		

TABLE I Infrared Spectra of Various Polyesters POLY(ETHYLENE 2,6-NAPHTHALATE)

3447

								Ľ						ion			le)					
				Assignment		$\nu (= C - 0) + arom.$	ν (=C-0) + arom.	arom. ring vibration	naphthalene ring	vibration	$\gamma_t(CH_2)$ gauche	naphthalene ring	vibration	benzene ring vibrat	\$\nu_s(0\leftarrow C) gauche	ν_a (O—C) gauche	δ(arom. CH in-plan					
	N ₆ N	Intensity	polarization spectral	change		vs	vs	a B	vs			s			s					ms	=	=
	0	þ	rre- quency	cm ⁻¹		1270	1250	1220	1180			1135			1090					980	020	ain
	Ŋ	Intensity	otartzacion spectral	change		vs	vs	m	vs			s			s	mw			m	 20		
(pər	U U	þ	rre- po quency	cm ⁻¹		1270	1250	1210	1180			1135			1090	1040			980	960	010	240
SLE I (contini	C_2N	Intensity	polarization spectral	change		vs	vs	۱ E	vs 🗎 -			s			 	i M		m crys.		+ 	=	
TAF.		Ē	r re- quency	cm ⁻¹		1270	1250	1210	1180			1135			1090	1044		1005		984	000	200
	C_4T	Intensity	polarization spectral	change		vs		w			w			s	vs		 s		h lls	sh	=	+ + +
	:	Ē	rre- quency	cm^{-1}		1260	1240	1200			1170			1120	1100		1020		980	950	000	920
	$c_{3}T$	Intensity	polarization spectral	change		vs					w			s	vs	w	 so				-	⊢ = 8
		Ē	rre- quency	cm ⁻¹	1280	1260	1240				1170			1120	1100	1040	1020				000	016
	C_2T	Intensity	polarization spectral	change		vs					w			== s	vs	W	s ==			+ wv	-	+ = 8
	-	F	rre- quency	cm ⁻¹	1280	1250	1240				1172			1120	1100	1042	1022			988	000	913

•

TABLE [(continued)

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
873 ns l $ -$ 900 sh $ -$ 870 ns l 930 n l + 875 ns l $ -$ 900 sh $ -$ 870 ns l 930 n l + 848 n + 840 n + 840 v 860 v - 920 s l vv 860 v - 920 v - 920 v l - 875 vv 790 vv + 710 sh - 725 s l 730 vv + 710 sh - 725 s l 730 vv 660 vv v 660 vv 630 vv - 740 vv - 740 vv l - 630 vv - 740 vv - 640 vv 630 vv - 740 vv - 640 vv 630 vv - 740 vv - 640 vv 630 vv - 650 vv 630 vv - 650 vv 630 vv - 650 vv 630 vv - 640 vv 640 vv - 640 vv
873 ms l = 900 sh l = 910 m l = 920 873 ms l = 875 ms l = 870 ms l = 920 919 m l = 920 919 m l = 920 910 w l = 875 910 w l = 875 911 m l = 1 crys. 912 m l = 1 crys. 913 m l = 1 crys. 914 w 1 = 750 915 m l = 1 crys. 915 m l = 1 crys. 916 w l = 755 917 m l = 765 917 m l = 770 918 m l = 1 crys. 910 m l = 1 crys. 910 m l = 1 crys. 910 m l = 1 crys. 910 m l = 1 crys. 910 m l = 1 crys. 910 m l = 1 crys. 910 m l = 1 crys. 910 m l = 1 crys. 910 m l = 1 crys. 910 m l
835 sh $\ -$ 375 ms 1 870 ms 1 930 n 1 + 873 ms 1 875 ms 1 870 ms 1 930 n 1 + 848 m + 840 m $\ +$ 840 w $\ $ 919 m 1 - 919 m 1 - 910 m 1 crys. 911 m 1 crys. 912 m 1 - 913 m 1 - 913 m 1 - 913 m 1 - 914 w $\ -$ 915 sh 1 crys. 915 m 1 crys. 916 w $\ -$ 917 w $\ -$ 917 w $\ -$ 918 w $\ -$ 919 m 1 - 919 m 1 - 910 m $\ -$ 910 m $\ $ 910 m $\ $
835 sh $\ -$ 900 sh $\ -$ 875 ms 1 875 ms 1 870 ms 1 930 n 848 m + 840 m $\ +$ 840 m $\ +$ 840 w $\ $ 835 m 794 w 7790 w $1+$ 840 w $\ +$ 832 m 710 sh 680 vw $1+$ 770 w $1+$ 740 v 710 sh 680 vw $1+$ 725 s 1 765 s 710 v 680 vw 630 vw $1+$ 765 s 710 m $\ -$ 500 m $\ -$ 550 v 810 v $-$ 740 v $-$
870 $ms \perp$ 900 $sh \parallel -$ 870 $ms \perp$ 871 $ms \perp$ 875 $ms \perp$ 870 $ms \perp$ 873 $ms \perp$ 870 $ms \perp$ $ms \perp$ 874 $m \parallel$ $h \parallel$ $h \parallel$ $ms \perp$ 870 $ms \perp$ $m \parallel$ $h \parallel$ $ms \perp$ 794 w 790 w $\parallel +$ 730 $s \perp$ 725 $s \perp$ $1 + +$ 730 $s \perp$ 725 $s \perp$ $1 + +$ 730 $w \perp$ 725 $s \perp$ $1 + +$ 731 sh 680 $vw \perp$ $1 + +$ 630 $vw \parallel$ 630 $vw \parallel$ $1 + +$ 510 $ww \parallel$ 520 $w \parallel$ $1 + +$ 430 $ww \parallel$ 500 $mw \parallel$ $1 + +$ 420 $w \parallel$ $1 + +$ 810 $vw \parallel$ $1 + +$ 420 $ww \parallel$ $w \parallel$ $1 + +$ $1 + +$ $1 + +$ 810 $ww \parallel$ $w \parallel$
875 $ms \perp$ $-$ 900 $sh \parallel -$ 870 873 $ms \perp$ $-$ 875 $ms \perp$ 870 848 $m +$ 840 $m \parallel +$ 840 730 v 790 w 790 730 $s \perp$ 725 $s \perp$ 740 730 $s \perp$ 725 $s \perp$ 740 730 $s \perp$ 725 $s \perp$ 726 740 $s m$ 680 w 630 731 $s h$ 630 w 740 740 $s m$ $s m$ $s m$ 740 755 $s \perp$ $r \rightarrow$ 720 $s m$ 740 $s m$ $s m$ $s m$ 720 740 $s m$ $s m$ $s m$ $s m$ 740 $s m$ $s m$ $s m$
835 sh $ -$ 900 sh $ -$ 875 ms $ -$ 900 sh $ -$ 848 m $+$ 840 ms $ -$ 848 m $+$ 840 ms $ -$ 848 m $+$ 840 m $ +$ 730 s $ -$ 790 w $ +$ 730 s $ -$ 720 w $ +$ 730 s $ -$ 725 s $ -$ 730 s $ -$ 725 s $ -$ 730 sh $ -$ 725 s $ -$ 730 sh $ -$ 725 s $ -$ 740 ww $ -$ 730 sh $ -$ 730 ww $ -$ 830 ww $ -$
895 $\sin 1 - 900$ 873 $\sin 1 - 875$ 848 $m + 840$ 848 $m + 790$ 794 $w - 790$ 730 $s - 1 - 725$ 710 $sh - 630$ 630 $w - 1 - 725$ 630 $w - 1 - 725$ 630 $sh - 1 - 725$ 640 $sh - 1 - 725$ 630 $sh - 1 - 725$ 640 $sh - 1 - 500$ 64
895 sh - 873 ms L 794 w 730 s L 710 sh 680 sh 630 vw 575 sh 575 sh 730 mw 572 sh 730 mw 573 mw 573 mw 573 mw 574 mw
895 873 873 873 873 7730 680 680 630 630 630 4430 7730 630 630 4430 7730 630 7730 630 7730 630 7730 7730

POLY(ETHYLENE 2,6-NAPHTHALATE)

3449

Fig. 2. Infrared spectra of some polyesters between 2800 and 3400 cm⁻¹.

than those of C_2T and other polymers, indicating that C_2N would take the trans configuration more easily. For C_4T , the 1470 cm⁻¹ band is not distinct and does not increase in intensity by crystallization. According to Menčik,¹¹ C₄T crystals have methylene linkages arranged as GTT so that the polarization of the bands associated with methylene vibration in the crystals should be different from those of C_2T and C_2N . For C_4N , Watanabe,¹² in our laboratory, found the existence of two crystal forms: fully extended and contracted. So far, we have not succeeded in finding the difference in the infrared spectra of these two forms.

The CH₂ wagging vibrations of C₂N are assigned to the bands at 1370 cm⁻¹ (gauche) and 1337 cm⁻¹ (trans) as in C₂T. By heat treatment, the 1337 cm⁻¹ band gives rise to a shoulder at 1332 cm⁻¹. The intensity change during crystallization is not as prominent for these bands as for CH₂ bending vibrations. For C₂T and C₃T, drawn and heat-treated samples show a relatively weak band at 1380 cm⁻¹. For C₄T and C₄N, three distinct bands always exist in this region: at 1380, 1350, and 1320 cm⁻¹ for C₄T and at 1365, 1340, and 1320 cm⁻¹ for C₄N. Thus, there are some variations in the spectra concerning the CH₂ wagging modes of different lengths of methylene groups.

The CH₂ rocking vibrations of C₂T were assigned to 848 cm⁻¹ (trans) and 895 cm⁻¹ (gauche) by Miyake.⁹ We tried arbitrarily to assign the band at 822 cm⁻¹ of C₂N to CH₂ rocking vibration. But the behavior of this band is rather complicated, as shown in Figure 4. Namely, on drawing, the 822 cm⁻¹ band shows sharp σ polarization and a band appears at 810 cm⁻¹ with π polarization. On

Fig. 3. Infrared spectra of some polyesters between 1400 and 1500 cm⁻¹.

heating either undrawn or drawn films, the 822 cm^{-1} band decreases in intensity and, instead, bands grow at 835 and 810 cm⁻¹. The 835 cm⁻¹ band is of σ character. A band at 820 cm⁻¹ exists in C₄N and C₆N, too, but it is a simple σ band and does not bring about 810 or 835 cm⁻¹ bands upon crystallization. Thus, the bands that appeared at 810 and 835 cm⁻¹ are characteristic of C₂N and probably originate from certain intermolecular interactions existing in oriented or crystalline states of C₂N, as discussed later.

The strong bands at 1090 cm⁻¹ in C₂N, C₄N, and C₆N would correspond to the bands at 1100 cm⁻¹ in C₂T, C₃T, and C₄T. They are of π polarization and decrease in intensity by heat treatment and may be assigned to the C—O symmetric stretching vibration of the gauche form. This assignment in case of C₂T was made by Miyake⁹ and others and differs from the views of Grime and Ward⁷ and some others; but it may be supported for C₂N by the fact that there is no intense absorption in the vicinity of 1100 cm⁻¹ in the spectra of naphthalene and 2,6-naphthalic acid, which have no ethylene glycol residue, and that there is such an absorption in diethyl 2,6-naphthalate, bis(β -hydroxyethyl) 2,6-naphthalate, etc.

Although there are disagreements, Miyake⁹ assigned the band at 1042 cm^{-1} of C_2T to antisymmetric C—O stretching vibration of the gauche form. The weak band at 1044 cm^{-1} in C_2N would correspond to the above vibration of C_2T . Corresponding bands exist in C_3T and C_4N but are too weak to be seen in C_4T

Fig. 3. (continued from previous page)

and C₆N. Making a couple with the 1040 cm⁻¹ band, the parallel band at 973 cm⁻¹ of C₂T was assigned to antisymmetric C—O stretching vibration of trans form by Miyake,⁹ although Liang and Krimm⁸ assigned it to a benzene ring vibration. The 973 cm⁻¹ band exist in C₃T, but in C₄T it has a peak at 930 cm⁻¹ with shoulders at 950, 980, and 920 cm⁻¹, which would throw some doubts on the assignment as C—O vibration. There are corresponding bands in C₂N, C₄N, and C₆N, but the spectral change of the 968 cm⁻¹ band of C₂N is rather complex, as shown in Figure 4. On drawing, the shoulder at 984 cm⁻¹ grows and both bands at 968 and 984 cm⁻¹ show parallel dichroism. On heating, the original band decreases in intensity and a new band appears at 1005 cm⁻¹. The latter forms a distinct band for undrawn films, but is hidden behind the 984 cm⁻¹ band for drawn films and has no perpendicular component. This behavior again must be related to some effects of intermolecular interactions under crystalline field characteristics to C₂N.

The origin of the intermolecular interactions which give birth to the new bands at 810, 835, and 1005 cm⁻¹ is considered to be the close packing of molecules in the unit cells of C₂N. According to Menčik,¹ the unit cell of C₂N has dimension a = 6.51 Å, b = 5.75 Å, c = 13.2 Å, $\alpha = 81^{\circ}21'$, $\beta = 144^{\circ}00'$, and $\gamma = 100^{\circ}00'$. The projection of the molecules along the c axis is shown in Figure 5(a), and the projection normal to the plane of the molecule is shown in Figure 5(b). In contrast to the configuration of C₂T and C₄T, all the atoms of the polymer chain including O=C-O (except the hydrogens of CH₂) are coplanar in C₂N. This UNDRAWN

UNDRAWN AND

HEAT SET

DRAWN

11

1

1100

1100

Fig. 4. Infrared spectra of some polyesters between 800 and 1100 cm^{-1} .

plane is approximately ($\overline{430}$) whose lattice distance is 0.88 Å. Therefore, the distance between the neighboring molecular planes perpendicular to the naph-thalene ring is 3.54 Å. On the other hand, since the angle β is large, one of the C atoms of $-CH_2$ - CH_2 - is just above a naphthalene ring, as seen from Figure 5(b). Considering that the van der Waals radius of a CH₂ is 2 Å and a half-

Fig. 5. Arrangement of molecules of C_2N in crystal (after Menčik): (a) projection along c axis. (b) projection normal to the plane of a naphthalene ring.

thickness of an aromatic ring is 1.7 Å, the distance between a naphthalene ring and a hydrogen atom of CH_2 in the neighboring molecules is almost abnormally short, so that it is quite conceivable that interactions exist between these atoms in the crystalline state. Such tight packing does not seem to exist in C_2T ,¹³ C_4T ,¹¹ and C_4N ,¹² judging from the dimension of the unit cells or from the atomic arrangements in the crystal.

The σ band at 3060 cm⁻¹ with a shoulder at 3050 cm⁻¹ of C₂N may be safely assigned to ν (aromatic CH), although it is of parallel polarization in C₂T. The other C_mT and C_mN have this band at this region. Corresponding with the 875 cm⁻¹ band of C₂T, C₃T, and C₄T, the band at 919 cm⁻¹ in C₂N, C₄N, and C₆N might be associated with an aromatic CH out-of-plane vibration. However, since the nearest band in the spectrum of naphthalene is at 955 cm⁻¹ and compounds such as 2,6-naphthalic acid contain a band in this region, it may be better to consider the band due to O=C-O out-of-plane bending vibration. This band in C₂N is weakened on heating, and, instead, bands grow at 933 and at 905 cm⁻¹ with σ polarization.

The bands at 765 cm⁻¹ of C₂N, C₄N, and C₆N are very intense and of σ polarization and correspond to the 730 cm⁻¹ band of C₂T, C₃T, and C₄T. The latter was a controversial one for a long time. First, Miller and Willis⁶ assigned it to a C—O—C bending vibration, but this was refuted by Grime and Ward⁷ since this band exists in terephthalic acid and other compounds containing no C—O—C linkage. Then, Miyake⁹ assigned it to the O—C—O out-of-plane bending vibration based on a number of spectra of the related compounds. However, in the spectrum of poly(ethylene terephthalate-D₄), the 730 cm⁻¹ band shifts to 640 cm⁻¹ so that the former does not seem to be associated, at least exclusively, with O—C—O bending. Thus, Grime and Ward⁷ and Liang and Krimm⁸ assigned the 730 cm⁻¹ band to an aromatic CH out-of-plane vibration. Since naphthalene has a strong band at 780 cm⁻¹, we favor the assignment of the 765 cm⁻¹ band of C₂N, C₄N, and C₆N to aromatic CH out-of-plane vibration.

The band at 470 cm⁻¹ in C₂N, C₄N, and C₆N would correspond to the band at 430 cm⁻¹ of C₂T which was assigned to aromatic CH out-of-plane bending by Liang and Krimm.⁸ This may be supported by the intense bands of naphthalene at 480 and 470 cm⁻¹. In C₂N, the behavior of the 470 cm⁻¹ band is a little different from the others: upon heating, a band appears at 480 cm⁻¹. The 470 cm⁻¹ band is of σ polarization, and the 480 cm⁻¹ band is of π polarization.

Besides the bands described above, there are more bands related to aromatic ring vibrations at 1600, 1570, 1500, and 1400 cm⁻¹. The strong σ bands at 1180 and 1135 cm⁻¹ do not exist in terephthalate polymers and are characteristic for the compounds having a naphthalene ring.

The intense band at 1715 cm^{-1} is, of course, due to C=O stretching vibration. Its overtone appears around 3400 cm⁻¹.

The stretching vibration of =C-O can be assigned to the doublet at 1250 and 1270 cm⁻¹, which is the most intense in the spectrum. Since there is a strong absorption at 1265 cm⁻¹ in naphthalene, the doublet may be partially associated with aromatic ring vibrations in addition to the =C-O stretching vibration.

In summary, among the poly(methylene 2,6-naphthalates), C_2N , C_4N , and C_6N have much in common in the infrared spectra, which also correspond fairly well to the spectra of C_2T , C_3T , and C_4T . However, at some frequencies, the spectral changes of C_2N show unique behavior owing to the existence of a characteristic crystalline field arising from the tight packing of the molecules in the crystal.

The authors wish to thank Messrs. S. Kawase and T. Kuratsuji, Products Development Institute, for making various polyesters for us. They are also thankful for the help from their colleagues at Plastics Research Institute.

References

1. Z. Menčik, Chem. Prûmysl, 17, 78 (1967).

2. R. S. Rogowski and G. F. Pezdirts, J. Polym. Sci. A-2, 9, 2111 (1971).

3. R. R. Richards and R. S. Rogowski, J. Polym. Sci. Phys., 12, 89 (1974).

4. I. Ouchi, H. Aoki, S. Shimotsuma, T. Asai, and M. Hosoi, in Proc. 17th Japan Congr. Materials Research, 1974, p. 217.

5. I. Ouchi, M. Hosoi, and F. Matsumoto, J. Appl. Polym. Sci., 20, 1983 (1976).

6. R. G. J. Miller and H. A. Willis, J. Polym. Sci., 19, 485 (1956).

7. D. Grime and I. M. Ward, Trans. Faraday Soc., 54, 959 (1958).

8. C. Y. Liang and S. Krimm, J. Mol. Spectrosc., 3, 554 (1959).

9. A. Miyake, J. Polym. Sci., 38, 479 (1959); ibid., 38, 496 (1959).

10. S. K. Bahl, D. D. Cornell, F. J. Boerio, and G. E. McGraw, J. Polym. Sci., Polym. Lett., 12, 13 (1974).

11. Z. Menčik, J. Polym. Sci. Phys., 13, 2173 (1975).

12. H. Watanabe, Kobunshi Ronbunshu, 33, 229 (1976) (in Japanese).

13. R. de P. Daubeny and C. W. Bunn, Proc. R. Soc., A226, 531 (1954).

Received July 20, 1976 Revised November 4, 1976